Quyết định 137/2006/QD-TTg

Decision No. 137/2006/QD-TTg of June 14, 2006, approving the strategy on research into, and application of, aerospace technology up to 2020

Nội dung toàn văn Decision No. 137/2006/QD-TTg of June 14, 2006, approving the strategy on research into, and application of, aerospace technology up to 2020


THE PRIME MINISTER OF GOVERNMENT
 -------

SOCIALIST REPUBLIC OF VIET NAM
Independence - Freedom - Happiness
----------

No: 137/2006/QD-TTg

Hanoi, June 14, 2006

 

DECISION

APPROVING THE STRATEGY ON RESEARCH INTO, AND APPLICATION OF, AEROSPACE TECHNOLOGY UP TO 2020

THE PRIME MINISTER

Pursuant to the December 25, 2001 Law on Organization of the Government;
Pursuant to the June 22, 2000 Law on Science and Technology;
Pursuant to the strategy on Vietnam's scientific and technological development till 2010;
At the proposal of the president of the Vietnam Science and Technology Institute,

DECIDES:

Article 1.- To approve the strategy on research into, and application of, aerospace technology in Vietnam up to 2020, which is enclosed with this Decision.

Article 2.- Organization of implementation of the strategy:

Ministries, ministerial-level agencies, Government-attached agencies and People's Committees of the provinces and centrally-run cities shall have to assume the prime responsibility for, and coordinate with concerned ministries, branches and localities in, performing specific tasks assigned to them in this strategy, and annually report to the Prime Minister thereon.

Article 3.- This Decision takes effect 15 days after its publication in "CONG BAO."

Article 4.- Ministers, heads of ministerial-level agencies, heads of Government-attached agencies and presidents of provincial/municipal People's Committees shall have to implement this Decision.

 

 

FOR THE PRIME MINISTER
DEPUTY PRIME MINISTER




Pham Gia Khiem

 

STRATEGY

ON RESEARCH INTO, AND APPLICATION OF, AEROSPACE TECHNOLOGY UP TO 2020
(Promulgated together with the Prime Minister's Decision No. 137/2006/QD-TTg of June 14, 2006)

FOREWORD

Aerospace technology is a hi-tech domain shaped through the integration of different technologies in order to create such facilities as satellites, spacecrafts, rockets, ground stations, etc., for the exploration, conquest and use of the outer space for humankind's benefits.

In October 1957, the Soviet Union successfully launched the first man-made satellite of the world into the space. Four years later, in April 1961, the first spacecraft orbited Russian astronaut Y. Gagarin around the earth. In July 1969, American astronaut Neil Amstrong became the first man to walk on the moon. These historical events have ushered in a new era in the humankind's conquest of the space.

Over almost 50 years of development, space science and aerospace technology have been widely applied and brought about practical efficiency in the development of economy, culture, education and healthcare as well as the maintenance of security and defense of almost all developed, and even developing countries. In this 21st century, some countries have set higher objectives, i.e., building bases on the moon for exploitation and transit of humans to the Mars.

The State of Vietnam has early been aware of the importance of space science and aerospace technology. On December 27, 1979, the Prime Minister issued Decision No. 454/CP, setting up Vietnam Space Research Committee and assigned the Committee the task of preparing scientific contents for the Soviet-Vietnam space flight. The flight took place successfully from July 23 to 31, 1980, orbiting Vietnam's first astronaut Pham Tuan and Russian astronaut V.V. Gorbatko to conduct some scientific tests in the space.

Over the past years, some achievements of space science and aerospace technology have been applied in Vietnam, especially in the domains of communications, hydrometeorology, remote sensing and satellite positioning, etc. However, due to various subjective and objective reasons, the scope and efficiency of aerospace technology research and application in Vietnam remain limited, failing to meet the current and future requirements of socio-economic development of the country.

With a view to boosting aerospace technology research and application to practically and efficiently serve the national industrialization and modernization as well as sustainable socio-economic development, in mid-2002, the Prime Minister assigned the Vietnam Science and Technology Institute to assume the prime responsibility for, and coordinate with the Ministry of Science and Technology and the concerned ministries and branches in, elaborating a scheme titled "the strategy research into and application of, aerospace technology up to 2020." On December 31, 2003, with his Decision No. 272/2003/QD-TTg the Prime Minister approved the strategy on Vietnam's scientific and technological development till 2010, which affirms that aerospace technology is a key technology.

The strategy on research into, and application of, aerospace technology up to 2020 aims to identify objectives and contents of, as well as solutions to, aerospace technology research and application up to 2020 in service of the country's socio-economic development, and to assign tasks of implementing the strategy to ministries, branches and localities.

The strategy is composed of 6 parts:

I. The world's situation of aerospace technology development and application.

II. Vietnam's situation and demand of research into, and application of, aerospace technology.

III. Viewpoints and objectives of the strategy.

IV. Tasks.

V. Solutions

VI. Organization of implementation

I. THE WORLD'S SITUATION OF AEROSPACE TECHNOLOGY DEVELOPMENT AND APPLICATION

1. Major trends of aerospace technology development and application

a/ Satellite technology has more and more strongly developed and applied widely and efficiently. Thanks to satellites, billions of people from different continents can now communicate with one another or simultaneously and immediately follow up the world's ongoing important events on TV or radio, etc. Satellites also give people in deep-lying and remote areas opportunities to study, get medical treatment and communicate with one another conveniently.

In telecommunications, there will emerge high-performance communications satellites with many new services, especially in relation to communication between objects flying in the outer space.

Images provided by remote sensing satellites are getting perfect with higher spatial and spectral definition and less repetition time. High- and super high-definition (of under 1 m) satellite images, which had been earlier used only for military purposes, have now been commercialized and used widely for different purposes.

Research satellites have become indispensable instruments in astrophysics, meteoric physics and geophysics. The system of satellites for observation of gravitational field of the earth, seawater level, temperature or salinity of the seas has achieved a very high precision, enabling the determination of daily changes of the oceans' surface. Special-use satellites for observation of physical field of the earth and meteorological parameters have more and more developed, creating a new instrument for research of the earth science and global climate change.

Satellite positioning technology has achieved a high precision with compact equipment and been applied in different domains such as building of the grid board on the ground, maritime navigation, aviation, land transport, guided weapons and observation of changes in the earth's crust, etc. In some developed countries, satellite-positioning equipment has been widely applied to personal means of transport.

Particularly, many countries are now interested in small satellites because of their low costs and ability to ensure necessary utilities. The trend of cooperation between countries in sharing information for exploitation of small satellite clusters has become increasingly common. To master small satellite technology is one of the ways to develop aerospace technology, which is feasible and suitable to developing countries. In recent years, many developing countries have selected to approach this technology, including the Republic of Korea, Malaysia, Thailand, Singapore, Indonesia, Algeria, Turkey, Nigeria, etc.

b/ The integration of remote sensing technology, geological information technology and satellite positioning technology has enabled the digitalization of topographical measurement for the building of environmental observation systems, early warning of natural disasters and effective management of natural resources.

c/ The exploration of planets in the solar system has achieved numerous important achievements thanks to the robots which have landed and operated for months on the Mars to take photos and samples of soil and rock, as well as the exploration flights to the Saturn and the Mercury. Some countries are implementing plans on the moon exploration and taking people to the Mars.

d/ Aerospace technology for military purpose with different kinds of satellite such as meteorological satellites, image reconnaissance satellites, signal reconnaissance satellites, communications satellites, navigation positioning satellites and defense-aid satellites, etc., has become an indispensable important element to win modern-time wars.

2. Some countries' lessons on aerospace technology development

Following Russia and the US, other countries like China, the UK, France, Canada, Japan and India have early developed aerospace technology and made remarkable achievements. Today, many developing countries have also succeeded in approaching, mastering and efficiently applying advances of aerospace technology to meet the requirements of economic and cultural development as well as maintenance of national defense and security. The following useful lessons for Vietnam may be drawn from experience of other countries:

a/ First, the key to success in aerospace technology research and application is the high determination of the country's leaders to promote internal strengths, learn from experience of other countries for aerospace technology research and development (R&D).

b/ Second, to boost international cooperation, absorb experience and technologies for efficient, quick and sustainable development. International cooperation in the aerospace technology may be organized in different forms: bilateral, multilateral, regional or international. Member countries of the European Space Agency (ESA) are executing the Galileo cooperation project in service of positioning and navigation, which is considered a counterweight to the global positioning system (GSP) of the US. The project on cooperation in the construction of the international space station (ISS), which is considered the most complicated and biggest project ever in the history of aerospace technology development, is being underway.

c/ Third, the succeeding and developing countries must select proper directions and appropriate steps in aerospace technology research and application. Not every country has enough conditions to research into such complicated and costly aspects of aerospace technology as rocket propulsion, staffed spacecrafts or space stations, etc.

The steps of aerospace technology development in the Republic of Korea, Malaysia, Thailand, Indonesia, etc., constitute valuable experience for development and application of aerospace technology in Vietnam. The key here is to make investment in infrastructure of aerospace technology and appropriate investment in research and international cooperation so as to receive advanced technologies and concentrate on the construction of strong aerospace technology centers, including research institutes and universities.

II. VIETNAM'S SITUATION OF AEROSPACE TECHNOLOGY RESEARCH AND APPLICATION

1. Situation of research into space science and aerospace technology

Over the past 30 years, Vietnam has conducted initial research activities in a number of aspects of the space science and aerospace technology. These include research subjects on space physics and aerospace technology under the scientific program of the Soviet-Vietnam space flight, implemented in 1981 and 1982, and the state-level research program 48.07 on "application of research achievements and use of the outer space," implemented in the 1981-1985 period. In addition to experimental results, some scientific research works have been published in domestic and foreign scientific and technical journals or reported at international scientific symposiums.

In recent years, the State has invested in many laboratories of the Vietnam Science and Technology Institute; the Military Scientific, Technical and Technological Center; the Hanoi University of Technology and the Hanoi National University, etc., for scientific and technological research in such domains related to aerospace technology as electronics-telecommunications, information technology, automation, materials technology and solar energy. These laboratories will serve as subsequent premises for the building of laboratories for aerospace technology research and application in the coming period.

2. Situation of application of aerospace technology in Vietnam

Vietnam has soon applied achievements of aerospace technology in the domains of hydrometeorology, communications, remote sensing and satellite positioning.

a/ Hydrometeorology

Meteorology is the first branch that has approached aerospace technology and applied its achievements in practice. During the seventieth of the twentieth century, the General Department of Hydrometeorology installed APT station of URAL label, provided by the Soviet Union, in order to receive cloud images from satellites and had, in fact, used the station to receive cloud images from such satellites in polar orbits as METEOR, TIROS, NOAA... Everyday, this station provided black and white photos to serve the monitoring of cloud fields and movements of the eyes of hurricanes. In the 1986- 1988 period, thanks to the UN-funded project VIE 80/051, the General Department of Hydrometeorology was equipped with 3 geostationary meteorological satellite (GMS) stations to receive cloud images, which were based in Hanoi, Da Nang and Ho Chi Minh city. However, by that time the analysis of satellite images was conducted mainly through eyes. In 1997, the General Department of Hydrometeorology was equipped with a high-definition satellite image-receiving station, which was capable of receiving multi-spectrographic images from GMS and NOAA satellites. These images, which had much higher precision compared to the old ones, had contributed to raising the quality of detection, monitoring and forecast of hurricanes and dangerous climatic phenomena. Today, satellite information is being used as indispensable materials in daily hydro-meteorological forecast and is particularly important in case of bad or dangerous weather when the information and communication system is often interrupted and observatory data given by normal methods cannot be promptly provided to forecasting centers. Recently, numerical value-forecasting methods based on satellite information as well as parallel processing and calculation models have been applied, contributing to shortening the forecasting time and increasing the precision of forecasts. The Vietnam Science and Technology Institute has also manufactured and supplied meteorological satellite image-receiving stations, which are cheaper than the imported ones.

Though being the initial results, the applications of aerospace technology in hydrometeorology in Vietnam have created good premises for the use of achievements of aerospace technology to better serve the performance of tasks of the domestic hydrometeorological branch, and created conditions for Vietnam to join international efforts in solving the problems of global meteorology of the world's particular concern such as the depletion of ozone layers and the building of a system for early warning of such natural disasters as earthquakes, tsunami, floods, storms, etc.

b/ Communications

Since 1980, the post and telecommunications, radio and television broadcasting and maritime sectors have installed and put into operation many ground stations such as Hoa Sen station (via Intersputnik system), VISTA station (via Intelsat system), VSAT station network, station for transmission of digitalized programs via satellites and TVRO network, and coastal Inmarsat station.

In 1996, the Government assigned the General Department of Post and Telematics to make a pre-feasibility study report for VINASAT project- a project on hiring the manufacture and orbiting Vietnam's own telecommunications satellites. In 1998, this report was approved. The General Department of Post and Telematics filled in the procedures of registration with ITU and started negotiations on the position of the orbit. The Corporation of Post and Telecommunications completed the pre-feasibility study report, which has been approved by the Government and is being implemented to enable Vietnam to orbit its satellites by 2008. Besides the VINASAT project, over the past years, the post and telecommunications industry has also organized training in different forms so that the contingent of technicians will be capable of undertaking professional jobs, which, in many developing countries, must be undertaken by foreign consultants.

c/ Remote sensing

Observation of the earth from the space (called remote sensing for short) is a specialized branch applying aerospace technology, based mainly on the reception, processing and use of images of the earth from satellites. Remote sensing was introduced in Vietnam in the seventieth of the twentieth century with satellite images of different parts of the Vietnamese territory, which were used first in forestry and geology, then in agriculture, monitoring of the environment and natural calamities, territorial planning, scientific research, etc. The application of remote sensing has been extended with higher quality through the 1981-1985 state-level research program on "application of achievements of research into, and application of, outer space," coded 48-07.

To date, remote sensing-specialized agencies at ministries, branches, localities, research institutes and universities have numbered several dozens with hundreds of cadres who have gone through full-time training at home and abroad. Remote sensing has become an instrument used rather commonly in Vietnam in scientific research and a number of management and production domains of such branches as topography, agriculture, fisheries, natural resources and environment... Funded by the State, many units of the Ministry of Natural Resources and Environment such as the Remote Sensing Center, the Cadastral Research Institute, the Geological and Mineral Research Institute have conducted many subjects on remote sensing, aimed at raising the quality and efficiency of basic surveys. Many scientific research works on remote sensing application have been conducted at the Vietnam Science and Technology Institute and some universities in such domains as oceanography, ecology, earth science, research into natural resources and development planning, etc.

For many years, Vietnam has collected many remote-sensing satellite images from different sources at different time points. However, so far we have only 2 sets of images covering the whole Vietnamese territory (mainly the continent), collected at different time points over a long period. Concretely: Project VIE 78/011 (1978-1982) and project VIE 83/004 (1984-1986) collected a set of LANDSAT images covering the whole Vietnamese territory in the seventieth of the twentieth century. In 1995, 1997 and 2000, the 2000-2001 topographical remote-sensing project of the General Land Administration also collected a set of SPOT images on the whole Vietnamese territory. The lack of remote sensing materials and the existence of materials of different types and different times have much restricted the effect of application of remote sensing in reality.

To put an end to this situation and promote the application of remote sensing in the management of natural resources and environment, in 2004, the Prime Minister permitted the Ministry of Natural Resources and Environment to build a satellite image-reception station and a center for satellite image processing with a total ODA loan fund of around 20 million euro. When completed, the project will actively provide a source of remote sensing material images.

d/ Satellite positioning

Satellite positioning is an important domain of application of aerospace technology and will strongly develop, possibly be applied more and more widely, especially in the domains of geodetics, determination of coordinates, traffic control and management... In Vietnam, land administration bodies have applied satellite-positioning technology to set up the national grid board since the ninetieth of the twentieth century. This technology has actually been accepted in production. The national grid boards have been built in the most difficulty-hit regions of the Central Highlands, Song Be and Minh Hai, as well as for Laos. From 1995 to 2000, the General Land Administration built a GPS grid board of level "0", the VN-2000 national reference frame and coordinate system. Since 2000, the system of 6 fixed positioning stations has been built in Hai Phong, Vung Tau, Dien Bien, Ha Giang, Cao Bang and Da Nang to ensure high precision of positioning and navigation throughout the Vietnamese territory and seas. To date, 5 stations have been put into operation in service of marine and topographical measurement, demarcation and plantation of Vietnam-China and Vietnam- Laos border marker-post. Satellite positioning technology has also been applied to observation of changes in the earth's crust and management of offshore fishing, etc.

3. Necessity and urgency of acceleration of aerospace technology research and application

Over the past 30 years, the aerospace technology research and application have practically contributed to the cause of socio-economic development towards modernization and maintenance of defense and security.

Today, the trend of globalization and strong integration, together with the quick and efficient development of such relevant scientific and technological domains as information technology, mechanical engineering, electronics, material technology... have been creating very favorable conditions for acceleration of aerospace technology research and application in our country.

However, because of the low level of the country's socio-economic development and inadequate awareness of authorities and branches about the role of aerospace technology, the research into, and application of, aerospace technology remain scattered, lack orientations and inter-branch coordination. At the moment, Vietnam has no national policy on aerospace technology research and application. The state investment in this domain remains modest, lacks concentration and thereby, yield little results. At present, the infrastructure of aerospace technology is almost none, with a very small and scattered contingent of personnel. Organizationally, Vietnam has no national agency officially tasked to coordinate aerospace technology application, R&D, thus failing to meet the practical demand. The said situation, if not soon redressed, will lead to the danger that Vietnam will lag far behind even the regional countries, will not be able to take advantage of development potentials and opportunities as well as tremendous achievements which may be brought about by aerospace technology, thereby contributing to acceleration of industrialization and modernization, strengthening national defense and boosting international integration.

To enable aerospace technology to contribute most effectively to the cause of development and protection of the country, especially in the current domestic and world situation, thus attaining the objective of turning our country into an industrialized one by 2020, the elaboration and efficient implementation of the strategy on research into, and application of, aerospace technology up to 2020 is really necessary and urgent.

III. VIEWPOINTS AND OBJECTIVES OF THE STRATEGY

1. Viewpoints

The aerospace technology research and application in Vietnam should be developed in line with the following viewpoints:

a/ To practically and effectively serve the performance of the tasks of socio-economic development, management of natural resources, monitoring of the environment and natural calamities as well as protection of the Fatherland by combining socio-economic development with security and defense tasks, contributing to raising the country's international position, scientific and technological potentials and strengths.

b/ To directly approach modern technologies, based on the practical demand and suitable to the country's socio-economic conditions, making full use of the Vietnamese people's intellectual potentials; to start with the reception of transferred technologies, proceed to modify and master technologies.

c/ To expand, diversify and selectively multilateralize international relations so as to attract investment, build the contingent of personnel and receive modern technologies, thereby speeding up the application and development of aerospace technology in Vietnam.

d/ The Government shall manage, control and further coordinate different branches and mobilize social resources for the application of aerospace technology, striving to accomplish the plan on schedule, ensuring the quality of each specific task as well as the whole strategy.

2. Objectives

By 2010:

a/ To formulate a national policy and legal framework for research, application and international cooperation in the domain of aerospace technology, policies to ensure human resources and investment capital for aerospace technology research and application; to establish a central agency for directing, managing and coordinating the aerospace technology research and application; to step by step consolidate the organization, material foundations and improve professional capabilities of the system of aerospace technology research, training and application units in our country, building a new institution specialized in aerospace technology.

b/ To build the initial infrastructure of aerospace technology, including the satellite image-receiving station and -processing center, the system of satellite positioning stations; to orbit and put into operation and exploitation the VINASAT geostationary telecommuni-cations satellite; to receive the transferred small satellite technology; to complete the designing and manufacture of a small satellite for observation of the earth and orbit it; to complete the building and put into operation corresponding ground control stations.

c/ To elaborate and organize the implementation of an independent scientific and technological program on aerospace technology. To organize domestic training of aerospace technology engineers; cooperate in research and training with countries which have developed industries of aerospace technology in order to train high-skilled experts, manufacture some hardware products (equipment of reception stations) and software products (image-processing software, software for information encryption and confidentiality, software to aid satellite design, etc.)

d/ To attain the region's intermediate level in terms of aerospace technology infrastructure, research and application.

By 2020:

a/ To master the technologies of manufacturing ground stations, to manufacture ground stations at competitive prices; to master small satellite technology, design and manufacture small satellites for observation of the earth; to mater rocket technologies and techniques; to train a contingent of highly-qualified personnel, meeting the demand for application and development of aerospace technology in Vietnam; to upgrade and efficiently use material foundations which were invested in the preceding periods.

b/ To upgrade the initial infrastructures by preparing a scheme and plan to orbit the second communications satellite, thus meeting all requirements of exploitation of domestic telecommunications, radio and television broadcasting services. To manufacture and orbit some more small satellites for observation of the earth, partly satisfy the demand to purchase satellite images from foreign countries; to complete the system of satellite positioning stations.

c/ To put aerospace technology applications in wide-ranging and regular use to meet the production, service, education and healthcare demands. To diversify and commercialize aerospace technology products.

d/ To achieve the region's relatively advanced intermediate level of aerospace technology research and application.

IV. TASKS

1. To formulate and perfect a legal framework for aerospace technology research and application

This task must be basically accomplished in the 2006-2010 period with the following contents:

a/ To study international laws and regulations on the use of the outer space to protect national sovereignty.

b/ To elaborate and finalize the State's and branches' legal and normative documents on aerospace technology research and application.

c/ To elaborate and finalize legal and normative documents on archive, management, exploitation and use of satellite images as well as conductive information such as maps and databases.

d/ To elaborate and promulgate regulations on confidentiality related to Vietnam's program on aerospace technology research and application.

e/ To set and promulgate domestic criteria on formation and standardization in the application and development of aerospace technology, ensuring their compatibility with international ones.

2. To build aerospace technology infrastructures

In the 2006-2010 period, to perform the following tasks:

a/ To build a satellite image-receiving station and -processing center in service national economic branches and scientific research, and a special-use reception station; to receive transferred technologies for designing and manufacture of small satellites for observation of the earth; to orbit a small satellite for observation of the earth.

b/ To execute the VINASAT project.

c/ To build a national key laboratory on aerospace technology.

In the 2011-2020 period, to perform the following tasks:

a/ To build some more laboratories at universities. The list of these laboratories shall be added on the basis of operation results of the 2006-2010 period.

b/ To manufacture and hire the orbiting of two small satellites for observation of the earth.

3. Research into space science and aerospace technology

In the 2006-2010 period: To elaborate and implement an independent scientific and technological program on aerospace technology in the 2006-2010 period for which the Vietnam Science and Technology Institute will assume the prime responsibility, so as to rally a contingent of domestic and foreign scientists to perform major tasks of the strategy, including:

a/ Research and manufacture of ground stations.

b/ Research and reception of small satellite technology.

c/ Research to approach such high technologies as the technology for high-definition optical observation, radar satellite technology and hi-speed communications satellite technology.

d/ Selective basic research related to development of aerospace technology.

e/ Research into balloons flied in the stratosphere in service of communications and television broadcasting.

f/ Research into the manufacture of a number of ground equipment and software.

In the 2011-2020 period: The independent scientific and technological program on aerospace technology will focus on research into the following issues:

a/ Modification and proceeding to mastery of the manufacture of ground stations at competitive prices.

b/ Modification and proceeding to mastery of small satellite technology.

c/ Selection of technologies for manufacture of facilities to launch small satellites into low orbits.

d/ Manufacture of a number of space equipment.

4. Application of aerospace technology

To widely apply aerospace technology so that it may bring about practical results, concerned ministries and branches shall, based on their demands and conditions and the following major orientations, formulate and concretize their respective tasks of application of aerospace technology:

In the 2006-2010 period, the application of aerospace technology in Vietnam should be accelerated both intensively and extensively in four major domains, namely communications, hydrometeorology, remote sensing and satellite positioning. By 2010, the application of aerospace technology must become a high-performance professional process of every branch. Specifically:

- Post and telecommunications, radio and television broadcasting: To strongly develop services so as to fully tap VINASAT satellites, develop distance learning and medical examination, distance conference and DTH television.

- Hydrometeorology, natural resources and environment: To raise the quality of early forecasts of rains, floods, flash floods, landslides and other natural calamities. To assess impacts of global climate change on Vietnam. To periodically assess changes in the use of land, establish digitalized topical topographical database for common use by central and local agencies.

- Agriculture, fisheries, survey of natural resources: To expand the application of remote sensing in formulation of a rice output-forecasting process in the key rice-growing regions, as well as in the forecast of floods, droughts and forest fires; in aquaculture planning and offshore fishing; in research into, and detection of, oil and gas resources and underground water, etc.

- Transport, defense and security: Apart from the exploitation of VINASAT satellites, to speed up the application of satellite positioning technology in service of navigation in land transport, aviation and maritime. To encourage economic organizations to invest in the provision of services and application of positioning and navigation technologies.

In the 2011-2020 period: To apply in Vietnam new properties of the second-generation Internet satellites, super high-definition satellites for observation of the earth, positioning satellites of high precision, and multi-functional compact ground equipment.

V. SOLUTIONS

1. Raising public awareness and developing human resources

To widely popularize knowledge about aerospace technology on the mass media, especially among pupils and students. To organize the compilation of programs and textbooks for graduate and postgraduate subjects on aerospace technology. To formulate and apply on a trial basis a mechanism for recruitment, training and use of talents at home and abroad in association with research and market; to early send the talented people to developed countries for training in aerospace technology with the state budget fund so as to meet the immediate urgent demands and achieve the strategy's objectives; to adopt a plan for updating achievements and retraining, nomination of Vietnamese specialists to participate in programs on cooperation with foreign countries in the domain of aerospace technology.

2. International cooperation

To continue participating in aerospace technology activities organized by the United Nations (UN) agencies such as OOSA (Office for Outer Space Affairs), UN-ESCAP, UNESCO, etc., or by the ASEAN; to consider and conclude projects on aerospace technology R&D with some countries which have favorable conditions.

To build partnership relations with countries which have common demands and benefits, especially those in Southeast Asia and the Asia-Pacific. To research into the formulation of the forms of bilateral and multilateral cooperation in the building and exploitation of infrastructures (such as ground stations, communications and remote sensing satellites) and share remote sensing databases, especially in the warning of natural calamities and management of the environment.

To create conditions for overseas Vietnamese involved in aerospace technology to participate in research work and training of domestic professional personnel.

3. Mechanism for mobilization and use of capital

It is necessary to mobilize all economic sectors to invest in the implementation of the strategy on aerospace technology research and application. Budget and ODA loan capital shall be invested in the performance of the tasks of research and testing, construction of key laboratories, overseas personnel training and other necessary tasks. The State shall create favorable conditions to promote investment, turn the results of aerospace technology research and application into commodities and introduce them on market.

VI. ORGANIZATION OF IMPLEMENTATION

1. To set up the Vietnam Committee for Aerospace Technology Research and Application, called the Vietnam Space Committee for short, which shall assist the Prime Minister in organizing and directing the implementation of the strategy on research into, and application of, aerospace technology up to 2020.

2. Assignment of implementation responsibilities

a/ The Ministry of Science and Technology, which is the agency in charge of state management of aerospace technology research and application, shall assume the prime responsibility for implementation of the strategy on research into, and application of, aerospace technology up to 2020, having the following tasks:

- To assume the prime responsibility for elaboration and direct the implementation of legal documents on aerospace technology research and application, of the regulation on coordination in the exploitation of aerospace technology foundations shared between ministries and branches.

- To direct the elaboration of, and approve, the independent scientific and technological program on aerospace technology and the project on key aerospace technology laboratories.

- To direct the formulation of, and approve, projects on application of aerospace technology in socio-economic development.

- To coordinate with the Ministry of Planning and Investment in technologically appraising investment projects in the domain of aerospace technology.

- To submit to the Prime Minister changes in the sponsoring agencies in case of failure to achieve the set objectives and task-performance schedule.

- To submit to the Prime Minister issues arising beyond their competence.

b/ The Vietnam Science and Technology Institute:

- To selectively research into basic issues related to space science and aerospace technology.

- To assume the prime responsibility for research into, and development of, small satellite technology.

- To assume the prime responsibility for, submit for approval and organize the implementation of the independent scientific and technological program on aerospace technology, and the project on key aerospace technology laboratories.

- To build an aerospace technology institute under the Vietnam Science and Technology Institute.

- To act as the standing office of the Vietnam Space Committee.

c/ The Ministry of Culture and Information

To assume the prime responsibility for information and propaganda work, including foreign-service information work to propagate the strategy on research into, and application of, aerospace technology.

d/ The Ministry of Education and Training

- To assume the prime responsibility for, and coordinate with the ministries and branches in, elaborating a framework program, compiling textbooks and defining discipline codes for aerospace technology training; elaborating and implementing a plan on training of human resources in space science and aerospace technology suitable to the requirements of implementation of the strategy.

- To formulate and organize the implementation of a mechanism on combination of education and training with research and application and a mechanism on coordination between universities and research institutes for implementation of the strategy.

e/ The Ministry of Planning and Investment:

- To assume the prime responsibility for, and coordinate with concerned agencies in balancing capital and include into the state plan the five-year and annual plans for implementation of the strategy on research into, and application of, aerospace technology.

- To mobilize ODA capital from donor countries for projects on aerospace technology research and application.

f/ The Ministry of Finance:

To assume the prime responsibility for, and coordinate with concerned agencies in, formulating a state credit support mechanism and a mechanism for management of capital of projects on implementation of the strategy in accordance with the State Budget Law.

g/ The Ministry of Post and Telematics

- To perform the state management of telecommunications satellite projects, first of all the VINASAT project.

- To take responsibility for registering the positions of orbits and frequencies to meet the requirements of development of telecommunications satellites and observation satellites, and to act as the major agency in international cooperation on positions of satellite orbits and coordination of international frequencies.

- To take part in research into, and manufacture of, telecommunication, electronic and informatics equipment used for aerospace technology.

h/ The Ministry of Natural Resources and Environment:

- To assume the prime responsibility for efficient exploitation of information collected from meteorological satellites in service of hydro-meteorological forecasts.

- To assume the prime responsibility for building and exploiting satellite image-receiving stations and -processing centers in service of branches in the civil sector under the regulation on coordination in exploitation of aerospace technology foundations shared between ministries and branches, which have been approved by competent authorities.

- To assume the prime responsibility for application of remote sensing in measurement and topography, monitoring of changes in land, water and mineral resources.

- To coordinate with other units, apply remote sensing technology in the monitoring and management of natural resources and environment in Vietnam.

i/ The Ministries of Defense and Public Security shall assume the prime responsibility for elaborating, submitting for approval and organizing the implementation of the tasks of aerospace technology research and application in defense and security domains.

j/ The Ministry of Industry

To research into and apply aerospace technology in Vietnam's industry.

k/ The Ministry of Agriculture and Rural Development:

- To apply remote sensing to the monitoring of floods and droughts.

- To assume the prime responsibility for application of remote sensing to the monitoring of changes in crops.

- To assume the prime responsibility for application of remote sensing to the monitoring of changes in forest resources and forest fires.

l/ The Ministry of Fisheries

To research into and apply remote sensing in service of aquaculture planning and fishing.

m/ The Ministry of Transport:

- To assume the prime responsibility for the use of satellite information to navigate ships in and out of ports.

- To assume the prime responsibility for application of aerospace technology in civil aviation.

- To use remote sensing, satellite positioning technology and GIS in the planning of traffic network.

n/ The Ministry of Foreign Affairs:

- To coordinate with concerned ministries and branches in developing international cooperation on aerospace technology, including accession to, and implementation of, treaties on aerospace technology.

- To encourage overseas Vietnamese intellects to take part in activities related to space science and aerospace technology in Vietnam.

Ministries, ministerial-level agencies, Government-attached agencies and provincial/municipal People's Committees shall, according to their functions and tasks assigned by the Prime Minister, coordinate with the Vietnam Aerospace Technology Research and Application Committee and concerned ministries and agencies in organizing and directing the implementation of the strategy on research into, and application of, aerospace technology up to 2020.

Đã xem:

Đánh giá:  
 

Thuộc tính Văn bản pháp luật 137/2006/QD-TTg

Loại văn bảnQuyết định
Số hiệu137/2006/QD-TTg
Cơ quan ban hành
Người ký
Ngày ban hành14/06/2006
Ngày hiệu lực09/07/2006
Ngày công báo...
Số công báo
Lĩnh vựcCông nghệ thông tin
Tình trạng hiệu lựcCòn hiệu lực
Cập nhật16 năm trước
Yêu cầu cập nhật văn bản này

Download Văn bản pháp luật 137/2006/QD-TTg

Lược đồ Decision No. 137/2006/QD-TTg of June 14, 2006, approving the strategy on research into, and application of, aerospace technology up to 2020


Văn bản bị sửa đổi, bổ sung

    Văn bản sửa đổi, bổ sung

      Văn bản bị đính chính

        Văn bản được hướng dẫn

          Văn bản đính chính

            Văn bản bị thay thế

              Văn bản hiện thời

              Decision No. 137/2006/QD-TTg of June 14, 2006, approving the strategy on research into, and application of, aerospace technology up to 2020
              Loại văn bảnQuyết định
              Số hiệu137/2006/QD-TTg
              Cơ quan ban hànhThủ tướng Chính phủ
              Người kýPhạm Gia Khiêm
              Ngày ban hành14/06/2006
              Ngày hiệu lực09/07/2006
              Ngày công báo...
              Số công báo
              Lĩnh vựcCông nghệ thông tin
              Tình trạng hiệu lựcCòn hiệu lực
              Cập nhật16 năm trước

              Văn bản thay thế

                Văn bản gốc Decision No. 137/2006/QD-TTg of June 14, 2006, approving the strategy on research into, and application of, aerospace technology up to 2020

                Lịch sử hiệu lực Decision No. 137/2006/QD-TTg of June 14, 2006, approving the strategy on research into, and application of, aerospace technology up to 2020

                • 14/06/2006

                  Văn bản được ban hành

                  Trạng thái: Chưa có hiệu lực

                • 09/07/2006

                  Văn bản có hiệu lực

                  Trạng thái: Có hiệu lực